
Page 1

&
 Microsoft Visual Basic

Software Development
Units 3 & 4

Vic Farrell

A text book for the VCE Applied Computing Study Design 2020 - 2023

2021 Edition

2nd EDITION

THANKS

To Adrian Janson.
To Elisa Brock for being an amazing proofreader right next door.

Self published using free templates from http://copiesandink.com/

Many thanks to Randall Munroe for the use of his excellent comics www.xkcd.com

This publication is designed to meet the teaching and learning needs of teachers and students of the Study
Design Applied Computing: Units 3 & 4 Software Development 2020 - 2023 provided by the Victorian
Curriculum and Assessment Authority.
© Victorian Curriculum and Assessment Authority. For current versions and related content
visit www.vcaa.vic.edu.au. Used with permission 2020.

Microsoft Visual Studio screen grabs used with permission 2020.

Thanks to Daniel Viglietti for his Year 12 SAC code for the cover art.

© Vic Farrell 2021 Published on Amazon.com

Table of Contents
 page

Chapter 1: Unit 3 Programming 4
Chapter 2: Unit 3 Analysis and Design 28
Chapter 3: Unit 4 Development and Evaluation 54
Chapter 4: Unit 4 Cybersecurity 84
Chapter 5: Visual Basic 108
Chapter 6: Assessment Tasks 128
Index 146
VB Index 153

ISBN: 978-0-6486708-3-4 (e-Book)
ISBN: 978-0-6486708-4-1 (Paperback)

Publisher: Amazon Kindle
Victoria, Australia
2020

For more resources: www.vicfarrell.com.au

The 2021 edition of this textbook was written and published after the
VCAA released all relevant support documentation. This version contains
updates and extra support material. For any further assistance please
contact Vic Farrell via the website: vicfarrell.com.au.

Page 3

Unit 3
Area of Study 1

Programming
In this area of study students examine the features and purposes of different design tools to accurately
interpret the requirements and designs for developing working software modules. Students use a programming
language and undertake the problem-solving activities of manipulation (coding), validation, testing and
documentation in the development stage.
The working modules do not have to be complete solutions and can focus on limited features of the
programming language; however, students are expected to fully develop the working modules in accordance
with the given designs. This will prepare students for creating a complete solution in Unit 4, Area of Study 1.
Validation and testing techniques are applied to ensure modules operate as intended and internal documentation
is written to explain the function of the modules. Students justify the use of the selected processing features
and algorithms in the development of their working modules.

Key Knowledge

Data and information
• characteristics of data types
• types of data structures, including associative arrays (or dictionaries or hash tables), one-dimensional arrays
• (single data type, integer index) and records (varying data types, index)
Approaches to problem-solving
• methods for documenting a problem, need or opportunity
• methods for determining solution requirements, constraints and scope
• methods of representing designs, including data dictionaries, mock-ups, object descriptions and pseudocode
• CSV), plain text (TXT) and

formats
• a programming language as a
• naming conventions for solution elements
• processing features of a programming language, including classes, control structures, functions, instructions and

methods
• algorithms for sorting, including selection sort and quick sort
• algorithms for binary and linear searching
• validation techniques, including existence checking, range checking and type checking
•

data
• purposes and characteristics of internal documentation, including meaningful comments and syntax.

Key skills

• interpret solution requirements and designs to develop working modules
• use a range of data types and data structures
• use and justify appropriate processing features of a programming language to develop working modules
• develop and apply suitable validation, testing and debugging techniques using appropriate test data
• document the functioning of modules and the use of processing features through internal documentation.

© Victorian Curriculum and Assessment Authority. For current versions and related content visit www.vcaa.vic.edu.au.
Used with permission 2020.

U
n

it
 3

 P
ro

g
ra

m
m

in
g

Page 4

Data and Information

Information is processed data. An example might be your mobile phone as an information system for
phone contacts. You input the data - given names, family names and mobile numbers and the system
places the data into the memory which can then be sorted, searched and used. Data is organised, sorted
and formatted into information such as spreadsheets, magazine layouts, websites, or reports. In digital
systems we mainly focus on text, numbers and images in our databases, software development and web

text, numbers, images, sound and video. All of these data
types are composed of fundamentally the same thing: Numbers! Digitising any data is the process of
converting it into numbers.

Binary

the only way these machines can “understand” the data that is read in. So we devised a simple code to
bridge the divide between humans and machines. If the circuit is OFF we will call it a zero. Computer
scientists use Ø to distinguish it from the letter O. If the circuit is ON we will call it 1. This is how the
connection between machines and humanity is made.

 Humans have a number system based on 10 symbols (Ø, 1, 2, 3, 4, 5, 6, 7, 8, 9) which is called the
decimal system. All values can be created with these ten symbols. It is suggested the reason we chose ten

and 1. Since there are only two symbols, we call this number system Binary (bi means 2).

Computers use 1s and Øs to represent all the values and all the other symbols we use in text. We call

group eight bits together to represent all the ASCII symbols (all the letters, numbers and symbols input
by a keyboard). This group of eight bits is called a byte.

Memory

Bytes are too small to measure memory. We usually store hundreds of characters in a basic text
Binary is based on the number 2. We set a kilobyte to 210

relationship between a bit and a byte and how each character on the keyboard is represented as a byte.
Common units of storage size are based on 2.

BINARY

One Bit = Ø or 1
One Byte = 8 Bits
a = Ø11ØØØØ1
b= Ø11ØØØ1Ø
c = Ø11ØØØ11
! = ØØ1ØØØØ1

MEMORY

1024 byte = 1 KB
1024 Kb = 1 MB
1024 Mb = 1 GB
1024 Gb = 1 TB
1024 Tb = 1 PB

Fig
1.1

U
n

it 3
 P

ro
g

ra
m

m
in

g

Page 5

Data Types

It is important to be aware of common data types used in software development and their size and
range. The key data types you need to know are:

• Boolean - true or false.
• Character - a single letter, number or symbol
• Floating Point - decimal numbers
• Integer - whole numbers
• String - text of any symbols

Variables

Variables are temporary data holding-spaces used in software. These are used to read in data, process
it and display the output. Here is a basic example: A simple calculator that reads in two numbers, adds
them and displays the answer. A variable holds the value of each of the two numbers typed in by the

algorithm (a plan for a
solution) for the calculator using variables.

Fig
1.2

START
Integer
Integer

Integer
Read in Number1
Read in Number2

Display Answer
END

Records

data lower than
1/1/2002 will return all records of people who are over the age of 18 years. Records are most easily

tabled record can be recreated in an algorithm.

Fig
1.3

START
Integer)

String)
String)

String)

String)
END

U
n

it
 3

 P
ro

g
ra

m
m

in
g

Page 6

Arrays

An array is a very useful data structure for large amounts of data that needs to be sorted or searched.
Arrays can only hold one type of data. Each element has an indexed address and this allows arrays to be

element’s address from zero to nine. This
computers start counting at zero! We can edit and access the data elements out of the array using their
location. We will use the example

ARRAY
Fig
1.4

 Array[0] = 16
Array[1] = 34
Array[2] = 12
Array[3] = 6
Array[4] = 28
Array[5] = 59
Array[6] = 72
Array[7] = 13
Array[8] = 43
Array[9] = 71

A One-Dimentional Array illustrated below is a list of product
is an array with 5 string elements in it. Each element has an index number associated with it. The index
allows the array to be easily searched and manipulated.

Product[0] = “eggs”
Product[1] = “milk”
Product[2] = “bread”
Product[3] = “cheese”
Product[4] = “tomatoes”

 A Multi-Dimentional Array as illustrated below has more than one list. The other name for this type of
array is an 2D Array. Below is a set of values and their associated data
type is

If we wanted to add names to our array we could create a third column calling the

SOCCER TEAM ARRAY
 Team(0, 0) = “ 1 “
 Team(0, 1) = “ Goal Keeper “
 Team(1, 0) = “2 “
 Team(1, 1) = “ Right Full Back “
 Team(2, 0) = “3 “

Full Back “
 Team(3, 0) = “4 “

 Team(4, 0) = “5 “

 Team(5, 0) = “6 “

Fig
1.5

 Team(6, 0) = “7 “
 Team(6, 1) = “ Right Winger “
 Team(7, 0) = “8 “
 Team(7, 1) = “ Central Mid Fielder “
 Team(8, 0) = “9 “
 Team(8, 1) = “ Striker “
 Team(9, 0) = “10 “

 Team(10, 0) = “11 “

U
n

it 3
 P

ro
g

ra
m

m
in

g

Page 7

So all the data in row one could be:

Dictionaries
A Dictionary is a data structure which has many built-in functions that can add, remove and access the
elements using a unique key. Compared to alternatives, a Dictionary is easy to use and effective. It has

data. They can
hold many data types while arrays can only hold one. In the example below the key terms identify the
team players positions.

 Team As New Dictionary(Of String, Integer)
 Team.Add(“Goal Keeper”, 1)
 Team.Add(“Striker”, 2)
 Team.Add(“Full Back”, 3)
 Team.Add(“MidField”, 4)

Hash Tables

A Hash Table is a data structure which implements all of the dictionary operations but also allows
insertion, search and deletion of elements providing the associated keys for each element. Hash Tables

key,
data. In a basic address book, you might

have:

 Bill, Surpreet, Jane, Nqube, Quentin

The problem with locating these names in an address book alphabetically is that will create unused
spaces in the table between Bill and Quentin leaving empty wasted storage space. Also a linear search
would still be required under each alphabetical section. There are two types of search methods we
examine here: Linear Search and
or database. Linear

data. What if we had millions of
items to search? A hash table can use the data itself to calculate a unique location for each item of data.

data. If we use a basic conversion

Unfortunately if “Neaj” is added to our address book then his converted number would also be 32. So
we use a Hash Function that allocates values depending on the location of each character in the string.

Example: JANE

Fig
1.6 Example: NEAJ

U
n

it
 3

 P
ro

g
ra

m
m

in
g

Page 8

This provides locations for each item of data based on the data content. So now if you are searching for
JANE the search engine need only conduct one operation to calculate the location and go directly to the

A common method is to use remainders to consolidate the data into multiple arrays. To calculate a
remainder a value is chosen (usually a prime number) to divide the value of the data. A remainder is then
output which limits the number of arrays in the matrix. In the example below, the data we have to store
in our hash table is:

23, 56, 47, 29, 92, 55, 11.

VB we call this a MOD
function.

Now we have 5 locations to store our data. We can consolidate the locations where our data could be
stored. If we used this mod function on our hash table of names we would use less space in our storage

[0] [1] [2] [3] [4]

55 56 47 23 29

11 92

Storage
When developing a solution, it is important to consider what data will be input into the system. The
system will only be effective if the data input is valid and correct.

When formatting and storing data it is important to consider the following issues:
• How soon do I need the data back if lost?
• How fast do I need to access the data?
• How long do I need to retain data?
• How secure does it need to be?
• What regulatory requirements need to be adhered to?

Structuring Data

A lot of hard work can be avoided by organising the data structures that best suit
the purpose of the project. This is why we use databases. Databases are essentially tables of data that

of ways data can be structured. Comma Separated Value format. Each value data point
is separated from the others with a comma character. CSV is a delimited
or columns separated by the comma character and records or rows terminated by new lines. Below in

CSV

Name, DOB, Role,

Fig
1.7

U
n

it 3
 P

ro
g

ra
m

m
in

g

Page 9

Extensible Markup Language (
documents in a format that is both human-readable and machine-readable. It uses tags in the same way
that HTML tags format a web page.
to database-formatted data with minimum impact on the amount of storage required. Figure 1.8 is an
example of
record.

<breakfast_menu>
 <food>

 <food>

breakfast_menu

food

name price description calories

$5.95 650

$7.95 900

Fig
1.8

Storage Media

Data storage is the recording and storing of information in a storage medium. Recording data is
accomplished by virtually any form of energy. Electronic data storage requires electrical power to store
and retrieve data. Data storage in a digital, machine-readable medium is digital data. Barcodes and
magnetic ink character recognition (MICR) are two ways of recording machine-readable data on paper.
Electronic storage of data can be grouped into Primary, Secondary and Tertiary.

Primary Storage includes the RAM and ROM that directly support the CPU. It is volatile memory, which
means all data is lost after the device is powered down.

Secondary Storage differs from primary storage in that it is not directly accessible by the CPU. The
computer usually uses its input/output channels to access secondary storage and transfers the desired data
using intermediate area in primary storage. Secondary storage does not lose the data when the device is
powered down. It is non-volatile memory. Examples of Secondary Devices include; Hard Drives (these can
be in-built to a computer system or be stand-alone external drives), CD/ROM, DVD,

magnetic tape, standalone RAM disks and Zip drives.

Tertiary Storage typically involves an automatic mechanism that will attach removable mass storage media
to a storage device when required. Data is often copied to secondary storage before use. It is primarily
used for archiving rarely accessed information since it is much slower than secondary storage. This is
primarily useful for extraordinarily large data stores, accessed without human operators. Typical examples
include tape libraries and full back-ups.

Page 10

Representing Data

IPO Chart

We need to use tools to plan our software solutions. The most basic tool is the IPO chart. This chart

the data that goes in and what comes out is very helpful!

Fig
1.9

INPUT = Number1 and Number2
OUTPUT = Answer

input outputProcessing

Data Dictionary

Once we know what data needs to be handled, we need to design the variables to handle it. Creating
a Data Dictionary is an important aspect of the Design Stage in developing a solution. It includes the
names of the variables, the data types of the variables, the size of the data held and a description of the
data. Returning to our Simple Calculator again here is a Data

Variable Name Data Type Size Description

3

3

4

Fig
1.10

The Data Dictionary above shows the correctly named variables, their data types and descriptions. The
size “3” indicates the number of bytes the variable can hold, in this case, the largest number that can be
entered is 999. If we changed the size to “2” the largest number we could enter would be 99. It indicates
the number of characters. We needed to put “4” as the size for IntAnswer because the largest possible

is limited to a subroutine, then the variable would be “LOCAL” or if it accessible from anywhere in the

A data dictionary assists the software developer to plan their program. When naming variables and
setting data types it is important then to identify which
will handle each of the variables. Setting a consistent approach to naming variables will assist the
programmer in naming and organising the objects and modules required in the solution.

U
n

it 3
 P

ro
g

ra
m

m
in

g

Page 11

Object Description Table

When designing your interface, especially in Visual Basic, you need to identify objects that will handle
your variables, and in turn, your data. It is important to use Camel Case and Hungarian Notation in the
naming of objects as well. You can see by the
input objects are text boxes (txtNumber1 and txtNumber2). The OUTPUT will be displayed in a label
(lblAnswer). The entire program will be executed when the button object (btnCalculate) is clicked.

Fig
1.11

txtNumber2

lblAnswer

btnCalculate

txtNumber1

is a way of formally identifying the name, type, purpose and properties of each object. You can see in

by things that happen (events) during the execution of the program or if the properties of the object are
changed (methods). For example: lblAnswer is a label that will have its “text” property changed in the
execution of the program. This is a method. The button btnCalculate triggers the program execution
when the event_Click occurs. This is an event.

Object Name Type Properties Description

Fig
1.12

A good rule of thumb when planning a project is to create your design tools in this order:

1. Interface design as a Mock Up or Storyboard
2. From the interface design, label all the objects in the interface.
3. Create the Object description table from your labeled interface.
4. List the variables that each object handles.
5. Create the Data Dictionary from the variable list.
6. Work through the DFD in stages to organise your algorithm.
7. Write your pseudocode from the algorithm notes.

U
n

it
 3

 P
ro

g
ra

m
m

in
g

Page 12

Mock Up - Design Layout

A Mock Up or

each of the objects and their purpose as well as design elements. The more details you can include, the
better prepared you will be once it is time to develop your solution. Perhaps even add the colour and
font choices.

Fig
1.13

Pseudocode

Once you have decided on the

Visual Studio and start typing up your code, it is essential that you plan your structure in an algorithm
using pseudocode. Pseudocode is natural language that is easy to read but follows the structure of a
programming language.

The Features of Pseudocode

• Every
• When assigning data to a variable use . Example: IntNumber 5
• Show each calculation required. Example: IntAnswer IntNumber1 + IntNumber2
• Displaying data as output. Example: lblAnswer.Text IntAnswer or Display IntAnswer
• Decision Control Structures. Example: IF condition THEN Action1 ELSE Action2 ENDIF
• Case Control Structures. Example: Case where condition, CASE1 Action1 CASE2 Action2 END

CASE
• Repetition Counted Loop Control Structures. Example: FOR counter

END FOR
• Repetition Post-Test Loop Control Structures. Example: REPEAT actions UNTIL condition
• Repetition Pre-Test Loop Control Structures. Example: WHILE condition DO actions END WHILE
• Use indentation and spaces to illustrate how control structures are incorporated
•

Mock Up

U
n

it 3
 P

ro
g

ra
m

m
in

g

Page 13

Records in an

Below is an Algorithm written in Pseudocode that allows the user three attempts at getting their
username and password correct. The program checks the password is correct at each attempt and
prompts the user with the number of remaining attempts. Can you name six algorithm features in the
example below?

START

FOR counter = 1 to 3 DO
 Read in strUsernameEntered
 Read in strPasswordEntered

 Display Prompt “Access Granted.”

 Display Prompt “ Incorrect credentials. You have ” (3 - Counter) “ attempts left”
 ENDIF
END FOR

END

Formatting and Structural
Characteristics of Files
So far we have only discussed software solutions where the user enters the data via a keyboard and
mouse. This is not always the most method especially when we have large amounts of complex
data. Sometimes data is collected from CCTV capture, such as car registration plates moving through an
intersection. Collecting data out in the

data it is important that the data is structured in
such a way that it can be accessed, sorted, searched, saved and retrieved. Software solutions such as our
Simple Calculator do not save data for use after the program has been turned off. To create effective,
robust software solutions these programs need to save data permanently so it can be accessed again after

data.

is a great approach if you are making a simple application where the client needs to update prices.
Examples of how Visual Basic can access and manipulate
programming Chapter 5.

If you need a more structured approach such
as the use of a spreadsheet you might need to

When you have data structures such as records,
XML uses

tags in much the same way HTML is structured.

is described and controlled by the XML tags. An

It can easily be read by software solutions and by

an data. Excel can also
produce CSV) that
can store records in much the same way.
store tabulated
imported into a spreadsheet or database.

Fig
1.14

U
n

it
 3

 P
ro

g
ra

m
m

in
g

Page 14

Validation
The interface between machines and humans is fraught with opportunities for data loss, mistakes and
possible nefarious intentions. Validation is the process of checking the input of data. Manual validation
includes spell checking, proof-reading and fact checking. These are processes the user can conduct
before entering data into a system. As a software engineer, it is important to anticipate human error
when reading in data to your program by including validation in the code.

Common validation techniques include:
• Existence Checking
• Type Checking
• Range Checking

Existence Checking is a validation method that checks if data is present in a variable or object. This can
be an important aspect of your interface design. If the user has not included an important data element,
existence checking will detect it and prompt the user to enter the missing data. For example: in a pizza
ordering app, if the user has not selected a pizza type, it is impossible to process an order, so a message
window would appear to prompt the user to make a pizza type choice.

Type Checking is a validation method that checks the data type of the data entered by the user. This is

detect that the data type is not numerical and return a prompt to the user to enter a value to indicate how
many pizzas they want to order.

Range Checking is a validation method that checks if a value sits between two limits. A common use
of range checking would be on the input of “date of birth”. To ensure those logging in to an app are
over 16, the range check could test for dates after 1/1/2004. Similarly, dates before 1920 would also be
excluded due to the unlikelihood that users would be over the age of 100.

Programming Languages
Programming Languages are coded instructions that both a human and a machine can understand.
There are two main types of programming languages: interpreted and compiled. An interpreted language
requires software to interpret and run the code. These languages rely on the browser software to
interpret and run the code in their window. A common example of interpreted languages are those that
run inside browsers on websites such as:

• PHP
• Excel
• XML
• HTML
• JavaScript
• Perl

Compiled Languages are converted into machine code and can run independently of other software. The
code can be compiled in an Integrated Development Environment (IDE) or through a text editor. They
create a stand-alone software application. Languages include:

• Python
• Visual Basic
• C++
• C#
• Java

U
n

it 3
 P

ro
g

ra
m

m
in

g

Page 15

Visual Basic is a compiled Object Oriented Programming (OOP) language. It enables the user to design
a
by arranging input, output and processing objects on a window or form. Each object is named and its
properties edited according to its association with a data structure.

Procedures, Subroutines, Events and Modules
 In Visual Basic(VB) there is a hierarchy of coding segmentation. A complete Visual Basic application is
called a Project. The default name is WindowsApplication1. Within a project there may be many code

Modules. These maybe called something like Form1.vb.

Once a module has been created we write the procedures as code. In VB there are two types of
procedures; functions and subroutines. Functions perform tasks that return a value. Subroutines perform
tasks but may not return a value. Below is a module that adds two numbers together. It is a Private
Subroutine that reads in IntNumber1 and IntNumber2, adds them and displays the answer. It is a self
contained program.

Private Sub AddNumbers (ByVal IntNumber1 As Integer, ByVal IntNumber2 As Integer)
Dim IntAnswer As Integer

End Sub

If multiple subroutines were required and the intAnswer value shared between them, the subroutines
would need to be public. Below is an example of a subroutine that executes when the “Calculate”
button is clicked. It reads data from
is Public.

 Dim IntNumber1 as Integer
 Dim IntNumber2 as Integer

 End Sub

A function procedure is a series of mathematical procedures enclosed by “Function” and “End
Function” and returns a value to the code that called up the function. Below are two functions that
return the result of a mathematical process. These functions can be called up from anywhere in the
program.

 Public Function AddNumbers (ByVal IntNumber1 As Integer, ByVal IntNumber2 As Integer)
 Dim IntAnswer As Integer

 END Function

 Public Function DivideByThree (ByVal IntAnswer as Integer)
 Dim DblThird As Double

 Return DblThird
 END Function

It is now possible to create a module that will use the subroutine and the two functions. The example on
the next page shows how a Module called “CalculatorApp” utilises the functions “AddNumbers” and
“DivideByThree” to process the input from subroutine “Calculate”.

U
n

it
 3

 P
ro

g
ra

m
m

in
g

Page 16

Public Class CalculatorApp

 Public Sub Calculate
 Dim IntNumber1 as Integer
 Dim IntNumber2 as Integer

 Call AddNumbers(IntNumber1, IntNumber2)
 MsgBox(IntAnswer)

 Call DivideByThree(IntAnswer)
 MsgBox(DblThird)

 End Sub

 Public Function AddNumbers (ByVal IntNumber1 As Integer, ByVal IntNumber2 As Integer)
 Dim IntAnswer As Integer

 Return IntAnswer
 END Function

 Public Function DivideByThree (ByVal IntAnswer as Integer)
 Dim DblThird As Double

 Return DblThird
 END Function
End Class

Calls up the functions inside the
subroutine so they can be used
multiple times throughout the

module.

Control Structures

To control the order in which your functions and procedures are executed, some structure needs to be
put in place. There are three main control structures:
• Sequence
• Selection
• Iteration
Sequence is simply the structure and order of instructions in the correct sequence. The example below is
an algorithm that reads in two values adds them together then displays the answer.

START
Read In Number1 (Instruction 1)
Read In Number2 (Instruction 2)

Display Answer (Instruction 4)
END

Decision control structures determine the direction of the program based on condition statements. The
example below reads in two values, adds them together and tests if that answer is odd or even using the
Mod of 2. If there is a remainder after Answer is divided by 2 then it is odd.

START
Read In Number1
Read In Number2

Display “The Answer is EVEN!” (Procedure 1)

Display “The Answer is ODD!” (Procedure 2)
END IF

END

U
n

it 3
 P

ro
g

ra
m

m
in

g

Page 17

 Iteration is a control structure that repeats a set of procedures in a loop. These loops can be controlled
by counting the number of times the
Counted Loop. This algorithm will read in three guesses via an input box.

START
Writeline: Guess the Number! You get three guesses!
FOR Counter 1 to 3 DO

END FOR
END

The second example is a Pre-Test Loop. Here a condition must be met before the loop is executed. This
algorithm shows the loop commences if the condition (the guess is wrong) is true.

START
Writeline: Guess the Number! Keep guessing till you get it right!

END

The last example is a Post-Test Loop. This loop and keeps
looping until the guess is correct.
ndition is met.

START
Writeline: Guess the Number! Keep guessing till you get it right!
REPEAT

END

Searching

If we were looking for “Bunmi” manually in our list of names below, we might start at the top and run
Linear Search does exactly that. It begins at the start of

the array and uses a loop to check each element until it is found. Below is an algorithm to search for

START

END IF

END

This type of searching approach is fine for small lists, but if you have a telephone directory of data to
search, this is very inefficient.

0 Robert
1 Manpreet
2 Brian
3 Julia
4 Sudha
5 Bunmi
6 Jackson
7 Maxine

Linear Search

U
n

it
 3

 P
ro

g
ra

m
m

in
g

Page 18

Clearly we need a better method than a Binary Search is
search.

You can see our array Names(7) below has been put into alphabetical order making it easier to search.

Names (0) = Brian
Names (1) = Bunmi
Names (2) = Jackson
Names (3) = Julia
Names (4) = Manpreet
Names (5) = Maxine
Names (6) = Robert
Names (7) = Sudha

 Now we check the name we are searching for “Bunmi” against the MIDDLE element.

our lowest, middle and highest. Because Bunmi is before Manpreet we make the old MIDDLE the new

Now once again we check our MIDDLE element and we have found our name “Bunmi”.

Comparison of Linear and Binary Searches

A Linear Search needs to potentially conduct as many operations as there are elements in the list being

that name. However, with the Binary search only 3 operations found the same element. How many

Operation 1

Operation 2

Binary Search

U
n

it 3
 P

ro
g

ra
m

m
in

g

Page 19

Binary search is more complex to code, but it is more
index of
of a method by its worst case scenario. If the item you are looking for is the last one in a list of n
number of items, the item will be found in On number of operations. If the list is 100 items long, it will
take 100 operations. For Binary search the
items will be found in Ologn which is about 30 operations for worst case scenario of a 100 item list.

Sorting

Despite many languages containing a ‘sort’ function, in major software solutions it is important to
manage the sorting of data with control structures. We will look at two key sorting methods: Selection
Sort and Quick Sort.

Selection Sort

The simplest sort is the Selection Sort which functions the way you would naturally sort items. It looks
through the whole list looking for the smallest item and places it at the beginning of the list. This is
called a PASS. The sort then passes the rest of the unsorted list for the next smallest item and adds it to
the new sorted section. It COMPARES the item to the last item in the sorted section and SWAPS them
so they are in order. This process repeats until the list is completely sorted. This is where arrays become
very useful. We can use the index of each data item to reposition the data into a new order. We use
nested loops. This allows each data item in the array to be compared with every other item in the array

array(n) can require up to n2
number of operations to sort.

A Selection Sort Algorithm to sort 100 data items in an array ArrayList(99) follows. A PassCounter
repeats each PASS 97 times. For each PASS the smallest item is searched for and then put at the start of
the unsorted section of the array.

BEGIN

END IF

END FOR

END FOR

END

Unsorted Array

k e a m s q b j

First Pass and Swap

a e k m s q b j

Second Pass and Swap

a b k m s q e j

Third Pass and Swap

a b e m s q k j

Fourth Pass and Swap

a b e j s q k m

Fifth Pass and Swap

a b e j k q s m

Sixth Pass and Swap

a b e j k m s q

Final Pass to Swap - Sorted Array

a b e j k m q s

U
n

it
 3

 P
ro

g
ra

m
m

in
g

Page 20

Quick Sort

Quick Sort is more sophisticated sorting technique using Divide and Conquer around a Pivot. This
is a more complex sorting solution that uses recursion. Recursion is where a procedure or function
calls itself. The algorithm sets StartIndex and EndIndex to the beginning and end of the array. In this

data
against the Pivot. Depending on the data it will add 1 to the StartIndex or minus 1 from the EndIndex.
When data is found to be lower than the ArrayList(StartIndex) it is swapped.

You can see at the bottom of the algorithm that the Function QuickSort calls itself up to run (0 to
EndIndex) then again for (StartIndex to ArrayLength). The nature of Quick Sort makes it more

n log n number of operations.

The bulk of the algorithm runs a pass. Each pass places the pivot in its correct location with all the
values lower than it on one side, and all the values higher on it on the other. Each of these sides are
now treated as separate lists that will run the pass through. For each half the process continues to
divide and conquer until each item has become a pivot and is located in its correct place.

Unsorted Array

k e a m s q b j

START FUNCTION: QuickSort
BEGIN

Pivot DO

Pivot DO

End IF

End While

Function QuickSort (0 to EndIndex)

END IF

END

pivot

rest of the list is divided into two lists.

k

e a b j m s q

Each half is then
treated the same way

e

pivot
pivot

a b j

m

s q

pivotpivot

a

b

s

q

Sorted Array

a b e j k m s q

